Reduction of Processing times for Temporal Subtraction on Lung Ct Image Employing Octree Algorithms

نویسندگان

  • Shinya Maeda
  • Hyoungseop Kim
  • Yoshinori Itai
  • Joo Kooi Tan
  • Seiji Ishikawa
  • Akiyoshi Yamamoto
چکیده

The temporal subtraction image, which can be obtained by subtracting previous image from current one, is useful for visual screening in clinical field. The temporal subtraction technique removes normal structures, e.g., blood vessel. Hence, it can enhance interval changes such as the new lesions and the changes of existing abnormalities on medical images. Recently, several temporal subtraction methods have been proposed for thoracic medical images. In temporal subtraction, image registration technique is required for correcting displacement between current image and previous one. However, efficient image registration technique of temporal subtraction for MDCT (Multi Detector-row CT) has not been proposed because of the complication of deformation in 3 dimensional region. In this paper, we propose a new efficient computer aided diagnosis (CAD) algorithms for detection of lung nodules which are obtained by temporal subtraction for thoracic MDCT images. We have tried to reduce the computational time for the temporal subtraction image by use of octree algorithms on 3-dimensional image space. To evaluate our method, we have applied the method to 4 MDCT dataset and confirmed its efficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diagnosis of COVID-19 Disease Using Lung CT-scan Image Processing Techniques

Introduction: Today, several methods are used for detecting COVID-19 such as disease-related clinical symptoms, and more accurate diagnostic methods like lung CT-scan imaging. This study aimed to achieve an accurate diagnostic method for intelligent and automatic diagnosis of COVID-19 using lung CT-scan image processing techniques and utilize the results of this method as an accurate diagnostic...

متن کامل

Diagnosis of COVID-19 Disease Using Lung CT-scan Image Processing Techniques

Introduction: Today, several methods are used for detecting COVID-19 such as disease-related clinical symptoms, and more accurate diagnostic methods like lung CT-scan imaging. This study aimed to achieve an accurate diagnostic method for intelligent and automatic diagnosis of COVID-19 using lung CT-scan image processing techniques and utilize the results of this method as an accurate diagnostic...

متن کامل

طراحی سیستم کمک تشخیص کامپیوتری نوین به منظور شناسایی ندول‌های ریوی در تصاویر سی‌تی ‌اسکن

Background: Lung diseases and lung cancer are among the most dangerous diseases with high mortality in both men and women. Lung nodules are abnormal pulmonary masses and are among major lung symptoms. A Computer Aided Diagnosis (CAD) system may play an important role in accurate and early detection of lung nodules. This article presents a new CAD system for lung nodule detection from chest comp...

متن کامل

Shearlet-Based Adaptive Noise Reduction in CT Images

The noise in reconstructed slices of X-ray Computed Tomography (CT) is of unknown distribution, non-stationary, oriented and difficult to distinguish from main structural information. This requires the development of special post-processing methods based on the local statistical evaluation of the noise component. This paper presents an adaptive method of reducing noise in CT images employing th...

متن کامل

Dose Reduction Methods in Chest Computed Tomography

Introduction: Computed tomography is one of the most powerful tools for investigating thorax disease, because it shows progression of lung disease much clearer than chest radiography. Technical advances in CT scanners have led to some abilities for CT scanners such as coverage of larger volume, lower noise and ability for acquiring image in one respiratory phase. However, this will be accompani...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011